
Scraping APIs
Quick Start Guide

target

domain

parse

locale

headless

“price_upper”: float
“manufacturer”: “string”

“customer_reviews”: “string”

query

request

“price”: float

device_type

“pos”: integer

num_pages

url

“images”: string

“brand”: “string”

“seller_id”: “string”
“color”: “string”

About Smartproxy1. 3

Conclusion7. 33

Scraping APIs products4.

Overview and integrations5.

Resources6.

Introduction to Scraping APIs2. 4

How web scraping APIs work3. 6

•	 Web Scraping API

•	 SERP Scraping API

•	 eCommerce Scraping API

•	 Social Media Scraping API

8

14

19

23

•	 Pricing

•	 Authentication methods

•	 API playground

•	 Requests usage

28

28

29

30

•	 GitHub

•	 Postman collections

32

32

About Smartproxy
1.
Smartproxy’s data collection infrastructure helps you effortlessly extract

web data from even the most challenging targets. Our products come with

award-winning 24/7 support, intuitive self-service dashboard, and flexible

pricing plans.

Introduction to
Scraping APIs

2.

Our Scraping APIs are designed to simplify real-time data collection at

scale. They lift the burden of managing proxies, running headless browsers,

and overcoming bot detection systems. With a single API call, you can get

structured data from the biggest search engines, social media platforms, and

eCommerce stores, or raw HTML from any website anywhere in the world.

These APIs are highly scalable and charge only for successful requests,

making your expenses predictable. If needed, you can even integrate them in

place of a proxy server with very few adjustments.

Proxies vs Scraping APIs
Smartproxy’s product family consists of proxies and web scraping APIs. You

may be wondering how the two compare. The table below explains their main

features:

Integration methods

Proxy servers

Locations

IP rotation

CAPTCHA solving

JavaScript rendering

Data parsing

Pricing model

Automated website
unblocking

Worldwide

Proxy

Automatic
or manual Automatic

Worldwide

API, proxy-like

Successful requestsTraffic and/or IPs

Proxies Scraping API

How Scraping
APIs work

3.

Scraping APIs let you send API requests with your target and optional

parameters like geolocation or JavaScript rendering. The API automatically

applies appropriate proxies, headers, and retries the request if necessary until

it scrapes the page. It then returns the result over an open HTTP connection.

Scraping APIs
products

4.

SERP eCommerce Web Social Media

Web
Scraping API
Web Scraping API tries to scrape any URL you pass
its way. It returns the page’s HTML.

How does Web Scraping API work?

Step 1

Select the target’s URL
and set the JavaScript
rendering parameter.

www.target... Request - - - 100% success

Step 2

Send a POST request to
our Web Scraping API

Step 3

Receive full-page HTML
data via API

Web Scraping API can return the HTML of any webpage. It makes a perfect

choice for use cases where you need a scalable web scraper that can render

JavaScript and overcome website protection mechanisms.

Main features

•	 Ability to scrape any website you throw its way

•	 JavaScript rendering for pages that require headless browsers

•	 Rich targeting options with over 100 supported countries

•	 Ability to load pages using mobile & desktop device headers

Parameters

Web Scraping API accepts the following parameters. Most of them are

optional. The only obligatory parameter is url.

target

url

locale

geo

device_type

headless

This will change the web interface language.
Example: – en-US – en-GB

The geographical location that the result depends on. City
location names, state names, country names, coordinates and
radius, Google’s Canonical

Device type and browser. Supported: desktop, desktop_chrome,
desktop_firefox, mobile, mobile_android, mobile_ios.

string

string

string

string

string

string

Parameter Type Description

Should be always set to *universal* for Web Scraping API

Direct URL (link)

Enable JavaScript rendering. Supported: html, png

Output examples

{
 “results”: [
 {
 “content”: “<html> page content here</html>”
 “status_code”: integer,
 “url”: “string”,
 “task_id”: “string”,
 “created_at”: “string”,
 “updated_at”: “string”
 }
]
}

Authentication methods

The web scraping APIs use username and password authentication. We

provide the username, and you can create a password in the dashboard. The

credentials are encoded in Base64 and passed as an authorization header.

curl	--request POST \
			 -- url http://scrape.smartproxy.com/v1/tasks \
			 -- header ‘Content-Type: application/json’ \
			 -- header ‘accept: application/json’ \
			 -- header ‘authorization: Basic U1B1c2VybmFtZToTUHBhc3N3b3Jk’ \
{
			 “target” “google search”,
			 “query” “world”,
			 “parse” “true”,
			 “locale” “en-GB”,
			 “geo” “London, England, United Kingdom”,
}

•	 Real-time

This is the main integration method. It lets you send POST requests to

the API endpoint with parameters in a JSON payload. This way, you can

specify data sources (such as Google Search) instead of providing the

full URL.

curl -k -x scrape.smartproxy.com:60000 -U username:password -H
“X-Smartproxy-Device-Type: desktop_firefox” -H “X-Smartproxy-
Geo: California,United States” “https://www.google.com/
search?q=world

Integration methods

All our APIs support two integration methods: real-time and proxy-like. Both

return data over an open connection, meaning that you send a request and

wait for the response.

•	 Proxy-like

This method lets you integrate the APIs as a proxy server. It’s useful when

your infrastructure is based on the proxy format, or you’re transitioning

from proxies. The method requires passing a full URL with parameters in

the request headers.

curl -u username:password ‘https://scrape.smartproxy.com/v1/
tasks’ -H “Content-Type: application/json” -d ‘{“target”:
“google_search”, “domain”: “com”, “query”: “world”}’

Response codes

The two tables below show the possible response codes you may encounter

while using the APIs.

200 - Success

204 - No content

400 - Multiple error
messages

401 - Invalid / not
provided authorization
header

403 - Forbidden

404 - Not found

500 - Internal error

524 - Timeout

429 - Too many
requests

Celebrate!

Wait a few seconds before trying again.

Re-check your request to make sure it is in
the correct format.

Re-check your provided credentials for
authorization.

Make sure your Google target is supported
by us

Re-check your targeted URL.

Wait a couple minutes and send another
request. Contact us for more information.

Wait a couple minutes and send another
request. Contact us for more information.

Make sure you still have at least one request left.
Wait a couple minutes and try again. If you are
encountering the error often – chat with us to see if
your rate limit can be increased.

Server has replied and given
the requested response.

Job not completed yet.

Bad structure of the request.

Incorrect login credentials or
missing authorization.

Your account does not have
access to this resource.

Your target was not found.

Service unavailable, possibly
due to some issues we are
encountering.

Service unavailable, possibly
due to some issues we are
encountering.

Exceeded rate limit for your
subscription.

Response Description Solution

HTTP response codes:

12000 - Success

12002 - Error

12003 - Not supported

12004 - Response not full

12005 - Response not fully parsed

12006 - Error

12008 - Error

12009 - Error

12007 - Unknown

Server has replied and given the requested response.

Parsing has failed completely.

Targeted website parsing is not supported.

Some fields were not parsed and are missing.

Some fields might not have been parsed and are
returned unparsed.

Unexpected error. Let us know the task ID and we will
check what went wrong.

Failed to parse all the data.

Target not found. Make sure the parameters you passed
are correct and supported.

We could not determine whether the data was parsed
correctly.

Response Description

Parsed result response codes:

SERP
Scraping API
SERP Scraping API lets you scrape Google, Baidu,
Bing, and Yandex by entering a URL or sending the
search query as a parameter. It returns data in
HTML or, in the case of Google, parsed JSON.

How does SERP Scraping API work?

Step 1

Choose the
integration
method: either
real-time or
proxy-like

real-time google_search

adidas

target

queryproxy-like

{
 “results”: [...]
}

Step 2

Select a target
domain and
specify additional
parameters
(query, device
type, parsing, etc.)

Step 3

Send a POST
request to one
of the available
SERP Scraping API
sources

Step 4

Receive raw HTML
or formatted JSON
in seconds

JSON

Request

API

SERP Scraping API is able to extract structured real-time results from major

search engines. It makes a perfect choice for search engine optimization,

brand protection, and other use cases that involve search engine data.

Main features

•	 Ability to scrape Baidu, Bing, Google, and Yandex

•	 Localized results with country, state, city, and zip code targeting

•	 Option to enter a search query as a parameter for easier use

•	 Parsing capabilities for various Google data types like search results, ads,

and Shopping

Main targets

•	 Google Search results with all page elements*

•	 Google Ads*

•	 Google Shopping (extract search, product, and pricing data) *

•	 Google Hotels

•	 Google Images

•	 Google Suggest

•	 Google Trends

•	 Baidu Search results

•	 Bing Search results

•	 Yandex Search results

* parsable

Parameters

SERP Scraping API accepts the following parameters. Most of them are

optional. The only obligatory parameters are target and url if you’re entering a

link directly, or target and query.

target

url

domain

query

page_from

num_pages

locale

geo

device_type

Top-level domain of your target.

...

Starting page number.

string

string

string

string

integer

integer

string

string

string

Parameter Type Description

Data source. Available targets are listed here.

Direct URL (link)

Number of results to retrieve in each page.

This will change the Google search page web interface
language (not the results). Example: – en-US – en-GB

The geographical location that the result depends on. City
location names, state names, country names, coordinates and
radius, Google’s Canonical

Device type and browser. Supported: desktop, desktop_chrome,
desktop_firefox, mobile, mobile_android, mobile_ios.

https://github.com/Smartproxy/SERP-Scraping-API#targets

parse

google_results_language

google_tbm

google_tbs

google_safe_search

stars

guests

date_range

headless

This parameter lets you filter Google Search results
for specific types of content (news, apps, videos...).

This parameter contains parameters, like limiting/
sorting results by date.

Used to hide explicit content from the results.

boolean

string

string

string

string

Integer array

Integer

string

string

Parameter Type Description

true’ will return parsed output in JSON format. Leave
blank for HTML – not all data sources can be parsed.

Shows results in a particular language. All of the
supported languages are listed here.

2-5 stars, used with google_travel_hotels target

Used with google_travel & google_travel_hotels
targets

Y-m-d,Y-m-d used with google_hotels & google_
travel_hotels targets

Enable JavaScript rendering. Supported: html, png

http://here

Output example for

Google Shopping Pricing

Bing, Yandex, Baidu

{
 “results”: [
 {
 “content”: {
 “url”: “string”,
 “title”: “string”,
 “rating”: float,
 “pricing”: [
 {
 “price”: float,
 “seller”: “string”,
 “details”: “string”,
 “currency”: “string”,
 “condition”: “string”,
 “price_tax”: float,
 “price_total”: float,
 “seller_link”: “string”,
 “price_shipping”: float
 },
],
 “review_count”: integer,
 “parse_status_code”: 12000
 },
 }
]
}

{
 “results”: [
 {
 “content”: “<html> page content here</html>”
 “status_code”: 200,
 “url”: “string”,
 “task_id”: “string”,
 “created_at”: “string”,
 “updated_at”: “string”
 }
]
}

eCommerce
Scraping API
eCommerce Scraping API lets you scrape Amazon
and Wayfair by entering a URL or sending the
query as a parameter. It returns data in HTML or, in
the case of Amazon, parsed JSON.

How does eCommerce Scraping API work?

Step 1

Choose the
integration
method: either
real-time or
proxy-like

real-time amazon

iPhone 13

target

queryproxy-like

{
 “results”: [...]
}

Step 2

Select a target
domain and
specify additional
parameters
(query, device
type, parsing, etc.)

Step 3

Send a POST
request to one
of the available
SERP Scraping API
sources

Step 4

Receive raw HTML
or formatted JSON
in seconds

JSON

Request

API

eCommerce Scraping API is able to extract structured real-time results from

major eCommerce websites. It makes a perfect choice for price monitoring,

market research, and other use cases that involve eCommerce data.

Main features

•	 Ability to scrape Amazon and Wayfair

•	 JavaScript rendering for pages that require headless browsers

•	 Option to enter a search query or item code as a parameter for easier use

•	 Parsing capabilities for various Amazon data types like search results,

product pages, and reviews

Main targets

•	 Amazon search pages*

•	 Amazon product pages*

•	 Amazon product pricing*

•	 Amazon product reviews*

•	 Amazon product questions*

•	 Amazon sellers*

•	 Wayfair product pages

* parsable

Parameters

eCommerce Scraping API accepts the following parameters. Most of them

are optional. The only obligatory parameters are url if you’re entering a link

directly, or target and query.

target

url

parse

domain

query

page_from

num_pages

locale

geo

True’ will return parsed output in JSON format. Leave blank for
HTML – not all data sources can be parsed.

Top-level domain of your target.

...

string

string

boolean

string

string

integer

integer

string

string

Parameter Type Description

Data source. Available targets are listed here.

Direct URL (link)

Starting page number.

Number of results to retrieve in each page.

This will change the web interface language.
Example: – en-US – en-GB

The geographical location that the result depends on. City
location names, state names, country names, coordinates and
radius, Google’s Canonical

https://github.com/Smartproxy/eCommerce-Scraping-API#targets

device_type

headless

string

string

Parameter Type Description

Device type and browser. Supported: desktop,
desktop_chrome, desktop_firefox, mobile, mobile_
android, mobile_ios.

Enable JavaScript rendering. Supported: html, png

Output example for

Amazon Pricing

{
 “results”: [
 {
 “content”: {
 “url”: “string”,
 “asin”: “string”,
 “page”: integer,
 “title”: “string”,
 “pricing”: [
 {
 “price”: float,
 “seller”: “string”,
 “currency”: “string”,
 “delivery”: “string”,
 “condition”: “string”,
 “seller_id”: “string”,
 “seller_link”: “string”,
 “rating_count”: integer,
 “price_shipping”: float,
 “delivery_options”: []
 },
],
 “asin_in_url”: “string”,
 “review_count”: integer,
 “parse_status_code”: 12000
 }
 }
]
}

Social Media
Scraping API
Social Media Scraping API lets you scrape
Instagram and TikTok by entering a URL or sending
the query as a parameter. It returns data in HTML
or parsed JSON.

How does Social Media Scraping API work?

Step 1

Choose the
integration
method: either
real-time or
proxy-like

real-time instagram

instagram_url

target

Search URLproxy-like

{
 “results”: [...]
}

Step 2

Select a target
domain and
specify additional
parameters
(query, device
type, parsing, etc.)

Step 3

Send a POST
request to one
of the available
SERP Scraping API
sources

Step 4

Receive raw HTML
or formatted JSON
in seconds

JSON

Request

API

Social Media Scraping API is able to extract structured results from major

social media platforms in real time or on demand. It makes a perfect choice

for sentiment analysis, influencer marketing, and other use cases that involve

social media data.

Main features

•	 Ability to scrape Instagram and TikTok

•	 Option to target a GraphQL endpoint or fully render the page

•	 Real-time or on-demand data delivery

•	 Parsing capabilities for extracting structured results

url

target

locale

geo

Language Locale

Geolocation

url

string

string

string

Parameter Type Description

Social Media URL

Desired target

Output example for

TikTok

{
 “data”: {
 “content”: {
 “nickname”: “string”,
 “verified”: boolean,
 “avatarThumb”: “string”,
 “openFavorite”: boolean,
 “ttSeller”: boolean,
 “postInfo”: {
 “id”: “string”,
 “description”: “string”,
 “postedAtTimestamp”: integer,
 “postedAt”: “string”,
 “author”: “string”,
 “music”: {
 “id”: “string”,
 “title”: “string”,
 “playUrl”: “string”,
 “coverLarge”: “string”,
 “coverMedium”: “string”,
 “coverThumb”: “string”,
 “authorName”: “string”,
 “original”: boolean,
 “duration”: integer,
 “scheduleSearchTime”: integer
 },
 “shareCount”: integer,
 “commentCount”: integer,
 “playCount”: integer,
 “accountLikes”: integer
 }
 },
 “errors”: [],
 “status_code”: integer
 },
 “task_id”: “string”,
 “url”: “string”
}

Output example for

Instagram

{
 “data”: {
 “content”: {
 “user”: {
 “biography”: “string”,
 “bio_links”: [
 {
 “title”: “string”,
 “lynx_url”: “string”,
 “url”: “string”,
 “link_type”: “string”
 }
],
 “biography_with_entities”: {
 “raw_text”: “string”,
 “entities”: []
 },
 “blocked_by_viewer”: boolean,
 “restricted_by_viewer”: boolean,
 “country_block”: boolean,
 “external_url”: “string”,
 “external_url_linkshimmed”: “string”,
 “edge_followed_by”: {
 “count”: integer
 },
 “fbid”: “string”,
 “followed_by_viewer”: boolean,
 “edge_follow”: {
 “count”: 1111
 },
 “follows_viewer”: boolean,
 “full_name”: “string”,
 “group_metadata”: “string”,
 “has_ar_effects”: boolean,
 “has_clips”: boolean,
 “has_guides”: boolean,
 “has_channel”: boolean,
 “has_blocked_viewer”: boolean,
 “highlight_reel_count”: integer,
 “has_requested_viewer”: boolean,
 “hide_like_and_view_counts”: boolean,
 “id”: “string”,
 “is_business_account”: boolean,
 “is_professional_account”: boolean,

Overview and
integrations

5.

Each scraping API has its own section in the dashboard. There, you can

manage your subscription, set up the API, and track usage statistics.

The Pricing tab lets you buy, upgrade, or
renew a subscription.

Pricing

Authentication method

The Authentication method tab lets you
create a password for accessing the APIs.

Continue to dashboardTry Scraping API playground

https://dashboard.smartproxy.com/login

The API playground tab includes an
interactive widget for configuring the API.
You can use it to test requests even without a subscription, and
it generates dynamic code samples for easier integration.

API playground

Continue to dashboardTry Scraping API playground

https://dashboard.smartproxy.com/login

Statistics tab shows your request
expenditure over time.

You can select a preset time period (such as week or month) or
enter custom dates.

Statistics

Continue to dashboardTry Scraping API playground

https://dashboard.smartproxy.com/login

Resources
6.
The following resources can help you learn more about the implementation

and functionality of the scraping APIs.

GitHub

Our GitHub includes

detailed code samples

for the most popular

programming languages

like Python, PHP, and

Node.js.

Postman collections

You can also take a look

at our Postman recipes

which explain each API

line by line.

https://github.com/Smartproxy
https://help.smartproxy.com/recipes/

Conclusion
7.
Smartproxy’s web scraping APIs were designed to help you effortlessly gather

web data at any scale. With the ability to target a wide range of locations,

render JavaScript, and parse major search, social media, and e-commerce

websites, they can make your data collection operations more efficient and

predictable.

We hope that you’ve found this guide helpful. We’d love to talk to you about

how Smartproxy’s web scraping APIs can support your organization. You can

book a call with us.

Talk to our expert Contact our support

https://smartproxy.com/#contact-sales
https://direct.lc.chat/12092754

